Electrostatic Potential and Capacitance

1. In the figure shown below, the charge on the left plate of the 10μ F capacitor is -30μ C. The charge (in μ C) on the right plate of the 6μ F capacitor is :

- 2. A parallel plate capacitor with plates of area 1 m² each, are at a separation of 0.1 m. If the electric field between the plates is 100 N/C, the magnitude of charge (in coulomb) on each plate is: $(\text{Take }\epsilon_0 = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{N}-\text{M}^2})$
- 3. Voltage rating of a parallel plate capacitor is 500 V. Its dielectric can withstand a maximum electric field of 10^6 V/m. The plate area is 10^{-4} m². What is the dielectric constant if the capacitance is 15 pF ? (given $\epsilon_0 = 8.86 \times 10^{-12} \text{C}^2 \text{ m}^2$)
- 4. A parallel plate capacitor has 1μ F capacitance. One of its two plates is given $+2\mu$ C charge and the other plate, $+4\mu$ C charge. The potential difference (in volt) developed across the capacitor is :
- 5. The electric field in a region is given by $\vec{E} = (Ax + B)\hat{\imath}$, where E is in NC⁻¹ and x is in metres. The values of constants are A = 20 SI unit and B = 10SI unit. If the potential at x = 1 is V_1 and that at x = -5 is V_2 , then $V_1 V_2$ (in volt) is:
- 6. Determine the charge (in coulomb) on the capacitor in the following circuit:

- 7. A capacitor with capacitance 5μ F is charged to 5μ C. If the plates are pulled apart to reduce the capacitance to 2μ F, how much work (in joule) is done?
- 8. In the given circuit, the charge (in μ C) on 4μ F capacitor will be :

9. The electric potential is $V = (x^2 - 2x)$. What is the electric field strength at x = 1?

- 10. The 1000 small droplets of water each of radius r and charge Q, make a big drop of spherical shape. The potential of big drop is how many times the potential of one small droplet?
- 11. A hollow metal sphere of radius 5 cm is charged such that the potential on its surface is 10 V. The potential (in volt) at a distance of 2 cm from the centre of the sphere is
- 12. From a point charge, there is a fixed point A at some distance. At A, there is an electric field of 500 V/m and potential difference of 3000 V. Distance (in metre) between point charge and A will be
- 13. A solid conducting sphere of radius a is surrounded by a thin uncharged concentric conducting shell of radius 2 a. A point charge q is placed at a distance 4a from common centre of conducting sphere and shell. The inner sphere is then grounded. The charge on solid sphere is $\frac{q}{x}$. Find the value of x.

- 14. A 20μ F capacitor is connected to 45 V battery through a circuit whose resistance is 2000Ω . What is the final charge (in coulomb) on the capacitor?
- 15. Calculate the area (in m²) of the plates of a one farad parallel plate capacitor if separation between plates is 1 mm and plates are in vacuum.

SOLUTIONS

As given in the figure, $6\mu F$ and $4\mu F$ are in parallel. Now using charge conservation

Charge on
$$6\mu\text{F}$$
 capacitor $=\frac{6}{6+4} \times 30$

$$=18\mu C$$

Since charge is asked on right plate therefore is $+18\mu C$

2. **(8.85 × 10⁻¹⁰)**
$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{A\varepsilon_0}$$

$$\therefore$$
 Q = ϵ_0 . E. A = 8.85 × 10⁻¹² × 100 × 1
= 8.85 × 10⁻¹⁰ C

a dielectric of dielectric constant k is given by

$$C = \frac{k \in_0 A}{d}$$

$$\therefore E = \frac{V}{d}$$

$$\therefore E = \frac{V}{d} \qquad \qquad \therefore C = \frac{k \in_0 AE}{V}$$

$$15 \times 10^{-12} = \frac{k \times 8.86 \times 10^{-12} \times 10^{-4} \times 10^{6}}{500}$$

$$k = 8.5$$

4. (1)
$$V = \frac{Q}{C}$$

$$= \left(\frac{Q_1 - Q_2}{2C}\right)$$

$$V = \frac{Q}{C}$$

$$= \left(\frac{Q_1 - Q_2}{2C}\right)$$

$$= \left(\frac{4 - 2}{2 \times 1}\right) = 1 \text{ V}$$

$$Q_1 \qquad Q_2$$

$$Q_2 \qquad Q_2$$

$$Q_1 - Q_2$$

$$Q_1 - Q_2$$

$$Q_2 - Q_2$$

$$= \left(\frac{4-2}{2\times 1}\right) = 1 \text{ V}$$

5. (180) Given,
$$\overrightarrow{E} = (Ax + B)\hat{i}$$

or
$$E = 20x + 10$$

Using
$$V = \int E dx$$
, we have

$$V_2 - V_1 = \int_{-5}^{1} (20x + 10) dx = -180 \text{ V}$$

or
$$V_1 - V_2 = 180 \text{ V}$$

6. (200) At steady state, there is no current in capacitor.

 2Ω and 10Ω are in series. There equivalent resistance is 12Ω . This 12Ω is in parallel with 4Ω and there combined resistance is $12\times 4/(12+4)$. This resistance is in series with 6Ω . Therefore, current drawn from battery

$$i = \frac{V}{R} = \left(\frac{72}{6 + \frac{12 \times 4}{12 + 4}}\right) = 8A$$

Current in 10Ω resistor

$$i' = \left(\frac{4}{4+12}\right)8 = 2A$$

Pd across capacitor, $V = i'R = 2 \times 10 = 20V$

.. Charge on the capacitor, q = CV= $10 \times 20 = 200 \mu C$.

7. (3.75 × 10⁻⁶)
$$W = U_f - U_i = \frac{q^2}{2} \left(\frac{1}{C_f} - \frac{1}{C_i} \right) \left(\because U = \frac{q^2}{2C} \right)$$

$$= \frac{(5 \times 10^{-6})^2}{2} \left(\frac{1}{2} - \frac{1}{5}\right) \times 10^6$$
$$= 3.75 \times 10^{-6} \text{J}$$

8. **(24)**
$$V_1 + V_2 = 10$$

and
$$4V_1 = 6V_2$$

On solving above equations, we get

$$V_1 = 6 \text{ V}$$

Charge on 4 μf ,

$$q = CV_1 = 4 \times 6 = 24 \mu C$$

9. (0)
$$E = -\frac{dV}{dx} = -(2x-2)$$

Now, E [at
$$x = 1$$
] = $-(2 \times 1 - 2) = 0$

10. (100) Volume of big drop = $1000 \times \text{volume}$ of each small drop

$$\frac{4}{3}\pi R^3 = 1000 \times \frac{4}{3}\pi r^3 \implies R = 10r$$

$$V = \frac{kq}{r}$$
 and $V' = \frac{kq}{R} \times 1000$

Total charge on one small droplet is q and on the big drop is 1000q.

$$\Rightarrow \frac{V'}{V} = \frac{1000r}{R} = \frac{1000}{10} = 100$$

$$V' = 100V$$

11. (10) Potential at any point inside the sphere = potential at the surface of the sphere = 10V.

12. (6)
$$E = 500 \text{ V/m}$$
 $\Delta V = 3000 \text{ V}$.

We know that electric field $|E| = 500 = \frac{\Delta V}{\Delta d}$

or
$$\Delta d = \frac{3000}{500} = 6 \,\text{m}$$

13. (4) The inner sphere is grounded, hence its potential is zero. The net charge on isolated outer sphere is zero. Let the charge on inner sphere be q'.

:. Potential at centre of inner sphere is

$$=\frac{1}{4\pi\epsilon_0}\frac{q'}{a}+0+\frac{1}{4\pi\epsilon_0}\frac{q}{4a}=0\quad \therefore \ \ q'=-\frac{q}{4}$$

14. (9×10^{-4}) Final charge on the capacitor,

$$Q = CV$$

= $20 \times 10^{-6} \times 45 = 9 \times 10^{-4}C$

15. (1.13 × 10⁸) For a parallel plate capacitor C = $\frac{\varepsilon_0 \text{ A}}{\text{d}}$

$$\therefore \ \ A = \frac{Cd}{\epsilon_0} = \frac{1 \times 10^{-3}}{8.85 \times 10^{-12}} = 1.13 \times 10^8 \, m^2$$

This corresponds to area of square of side 10.6 km which shows that one farad is very large unit of capacitance.

